
Some criteria for determining when a Walsh Series is a

Walsh-Fourier Series

J. Alexopoulos∗and E. H. Sprague†

September 5, 2002

Abstract

We show that a general Walsh series is the Walsh-Fourier series of a function f ∈ Lp[0, 1] for 1 ≤ p <∞ if

and only if its sequence of partial sums contains a relatively weakly compact subsequence. Several other

criteria are established for the case where f ∈ LΦ[0, 1], the Orlicz space generated by an N -function Φ.
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1 Introduction and background

A characterization of the Trigonometric-Fourier series of certain functions in L1 [0, 2π], by way of the classical

theorem of De La Vallée Poussin stated below, is studied in Chapter IV.5 of A. Zygmund’s Trigonometric

Series [10, p. 145]. This discussion led us to consider whether we can know when an infinite Walsh series is

the Walsh-Fourier series for a function in Lp[0, 1], 1 ≤ p < ∞ or, in fact, LΦ [0, 1] for some N -function Φ.

There are many deep results in the literature addressing these types of questions (for example [8, chapter

7]).

A key notion in this paper is that of uniform integrability: Recall that a subset K of L1 [0, 1] is called

uniformly integrable if lim
c→∞

sup
{∫

[|f |≥c]
|f | : f ∈ K

}
= 0. Alternatively, K ⊆ L1 [0,1] is uniformly integrable

if and only if it is L1-bounded and for each ε > 0 there is a δ > 0 so that sup
{∫

A
|f | : f ∈ K

}
< ε for all

measurable A with λ(A) < δ (λ denotes Lebesgue measure on [0, 1]). The theorem of Dunford and Pettis (see
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at Universidad Central de Venezuela, Caracas-Venezuela and Universidad de Los Andes, Merida-Venezuela, during the summer

of 2002.
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[3, p. 93]) which states that a subset K of L1[0, 1] is uniformly integrable if and only if it is relatively weakly

compact, is a well known characterization of uniformly integrable subsets of L1 [0, 1]. Another characterization

of uniform integrability is given by a theorem of De La Vallée Poussin (see [7, p. 19]) which states that a

subset K of L1 [0, 1] is uniformly integrable if and only if there is a non-negative, convex function Q with

limt→∞
Q(t)

t = ∞ so that sup
{∫ 1

0
Q (|f |) : f ∈ K

}
< ∞.

In section 2 we show that a general Walsh series 〈Sn〉n∈N =
∑∞

n=0 anwn is the Walsh–Fourier series of an

f ∈ L1[0, 1] if and only if there is a uniformly integrable subsequence 〈Snk
〉

k∈N
of 〈Sn〉n∈N (theorem 2.1).

For 1 < p < ∞ we establish the fact that a general Walsh series 〈Sn〉n∈N =
∑∞

n=0 anwn is a Walsh–Fourier

series of an f ∈ Lp[0, 1] if and only if there is a subsequence of its partial sums 〈Snk
〉k∈N with bounded Lp

norms (theorem 2.2).

In section 3 we establish a number of different criteria to determine when a general Walsh series is the

Walsh-Fourier series of a function in an Orlicz space. In theorem 3.1 we establish that a general Walsh

series 〈Sn〉n∈N =
∑∞

n=0 anwn is a Walsh–Fourier series of an f ∈ LΦ[0, 1] for some N -function Φ if and

only if there is a subsequence of its partial sums 〈Snk
〉k∈N with bounded LΦ norms while in corollary 3.2 we

investigate the special case of Φ ∈ ∆2. Subsequently, in corollary 3.3 we use the theorem of De La Vallée

Poussin to give additional criteria to determine when a general Walsh series is the Walsh-Fourier series of

a function in L1[0, 1]. Finally in corollary 3.6 we investigate some aspects of the Walsh-Fourier series of a

function in an Orlicz space, whose generating function does not satisfy the ∆2 condition.

1.1 Some facts from the theory of Walsh functions

We describe the Walsh functions in the Paley ordering [8, p.1].

Let 〈rn〉n∈N denote the sequence of Rademacher functions. That is, let

r0 (x) =

 1 if x ∈
[
0, 1

2

)
−1 if x ∈

[
1
2 , 1
) .

We extend r0 to the whole real line periodically with period one and define

rn(x) = r0 (2nx) , for n ∈ N.

For m ∈ N we find the mth Walsh function, wm : [0, 1) → {−1, 1}, in the Paley ordering. For m = 0 define

w0(x) = 1, ∀x ∈ [0, 1].

For m > 0 we write the dyadic expansion of m:

m =
∞∑

k=0

ek2k, ek ∈ {0, 1}
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and define

wm(x) =
∞∏

k=0

(rk(x))ek

where ek is the kth dyadic coefficient of m. Since all but finitely many of the ek’s are zero, the Walsh

functions in the Paley ordering are finite products of the rn’s It turns out that there is a correspondence

between the Walsh functions in the Paley ordering and the collection of continuous characters on the Dyadic

Group. From this isomorphism, we find that the Walsh functions in the Paley ordering form an orthonormal

basis in L2[0, 1]. ([8, Chapter 1])

1. Definition: For x ∈ [0, 1] we write the dyadic expansion of x, x =
∑∞

n=0 xn2−(n+1). For the dyadic

rationals, we choose the sum whose final terms are zero. We define dyadic addition on [0, 1) × [0, 1),

+D, by

x +D y =
∞∑

n=0

|xn − yn| 2−(n+1) ([8, p. 10])

2. Paley’s Lemma:
∑2n−1

k=0 wk(x) =

 2n if x ∈ [0, 1
2n )

0 otherwise
([8, p. 7])

3. Lemma: If x and y are in the same nth dyadic interval,
[

j
2n , j+1

2n

)
, then x +D y is in

[
0, 1

2n

)
. This

follows from the fact that when x and y are in the same dyadic interval, the first n terms of the dyadic

sums of x and y are equal, so |xk − yk| = 0 for k ≤ n.

4. Lemma: wn(x)wn(y) = wn(x +D y) ([8, p. 10])

5. Notation: For the rest of this paper

• S =
∑

n∈N anwn is an arbitrary Walsh series with Real coefficients.

• Sf =
∑

n∈N f̂nwn is a Walsh-Fourier series of a function f ∈ L0 [0, 1], where the nth coefficient

of the series is f̂n =
∫ 1

0
f(t)wn(t)dt.

• Sn =
∑n−1

k=0 anwk is the nth partial sum of a Walsh series. Snf =
∑n−1

k=0 f̂kwk is the nth partial

sum of a Walsh-Fourier series.

1.2 Some facts from the theory of Orlicz Spaces

We recall some basic facts about N -functions and Orlicz Spaces. For a detailed account of these facts, the

reader could consult chapters one and two in [6].

1. Definition: A function Φ is an N -function if and only if Φ is continuous, even and convex with

(a) limx→0
Φ(x)

x = 0;
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(b) limx→∞
Φ(x)

x = ∞;

(c) Φ(x) > 0 if x > 0.

2. Definition: For an N -function Φ define Ψ(x) = sup{t|x| − Φ(t) : t ≥ 0}. Then Ψ is an N -function

and it is called the complement of Φ.

Observe that Φ is the complement of its complement Ψ. Given an N -function Φ, the corresponding

space of Φ-integrable functions is defined as follows:

3. Definition: For an N -function Φ and a measurable f define

Φ(f) =
∫ 1

0

Φ(f).

If Ψ denotes the complement of Φ let

LΦ =
{

f measurable :
∣∣∣∣∫ 1

0

fg

∣∣∣∣ < ∞, ∀g with Ψ(g) < ∞
}

The collection LΦ is then a linear space. For f ∈ LΦ define

‖f‖Φ = sup
{∣∣∣∣∫ 1

0

fg

∣∣∣∣ : Ψ(g) ≤ 1
}

Then (LΦ, ‖·‖Φ) is a Banach space, called an Orlicz space. Moreover, letting ‖f‖(Φ) = inf
{

k > 0 : Φ
(

f
k

)
≤ 1
}

be the Minkowski functional associated with the convex set {f ∈ LΦ : Φ(f) ≤ 1}, we have that ‖ · ‖(Φ)

is an equivalent norm on LΦ, called the Luxemburg norm. Indeed, ‖f‖(Φ) ≤ ‖f‖Φ ≤ 2‖f‖(Φ), for all

f ∈ LΦ.

4. Theorem: Let Φ be an N -function and let EΦ be the closure of the bounded functions in LΦ. Then

the conjugate space of (EΦ, ‖ · ‖(Φ)) is (LΨ, ‖ · ‖Ψ), where Ψ is the complement of Φ.

5. Definition: An N -function Φ is said to satisfy the ∆2 condition (Φ ∈ ∆2) if

lim supx→∞
Φ(2x)
Φ(x) < ∞. That is, there is a K > 0 so that Φ(2x) ≤ KΦ(x) for large values of x.

6. Definition: We say that a collection K ⊂ LΦ has equi-absolutely continuous norms if and only if it is

norm bounded and ∀ε > 0 ∃δ > 0 so that sup{‖χEf‖Φ : f ∈ K} < ε whenever λ(E) < δ.

7. Theorem: Let Φ be an N -function and Ψ be its complement. Then the following statements are

equivalent:

(a) LΦ = EΦ.

(b) LΦ = {f measurable : Φ(f) < ∞}.

(c) The dual of
(
LΦ, ‖ · ‖(Φ)

)
is (LΨ, ‖ · ‖Ψ).
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(d) ∀f ∈ LΦ, {f} has equi-absolutely continuous norms.

(e) Φ ∈ ∆2.

8. In [1] J. Alexopoulos has shown that

(a) Theorem: If K ⊆ LΦ has equi-absolutely continuous norms, then K is a Banach-Saks set in LΦ.

In particular K is relatively weakly compact in LΦ ([1, thm. 2.3]).

(b) Theorem: A set K is relatively weakly compact in L1 if and only if there is Φ ∈ ∆2 so that K

has equi-absolutely continuous norms (in LΦ) and it is thus relatively weakly compact in LΦ ([1,

thm. 2.5]).

(c) If Φ ∈ ∆2 and K ⊂ LΦ then the following statements are equivalent:

i. The set K has equi-absolutely continuous norms.

ii. The collection {Φ(f) : f ∈ K} is uniformly integrable.

2 The case of Lp [0, 1] for 1 ≤ p < ∞

Our first theorem characterizes those Walsh series which are Walsh-Fourier series of a function f ∈ L1[0, 1]:

Theorem 2.1 A general Walsh series 〈Sn〉n∈N =
∑∞

n=0 anwn is the Walsh–Fourier series of an f ∈ L1[0, 1]

if and only if there is a uniformly integrable subsequence 〈Snk
〉

k∈N
of 〈Sn〉n∈N.

Proof: In order to prove sufficiency it is enough to recall that S2nf → f in L1 norm ([8, p. 142]) and

thus 〈S2nf〉n∈N is relatively norm-compact. Hence 〈S2n〉n∈N is relatively weakly-compact and consequently

uniformly integrable, thanks to the Dunford-Pettis theorem. An alternative, insightful proof relies on a

famous theorem of Doob [2, p. 336]:

Doob’s martingale convergence theorem: If 〈fn,An〉n∈N is a martingale, the following are equivalent:

1. 〈fn〉n∈N is a uniformly integrable sequence.

2. 〈fn〉n∈N converges in L1.

3. There exists an integrable g so that fn = E(g | An)∀n ∈ N

In particular, if any of (1), (2) and (3) are satisfied then there is a function g ∈ L1 such that fn → g almost

surely.

With this theorem in hand, we proceed as follows:
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For any n, let An be the σ-algebra of subsets of [0, 1] generated by the collection of the 2nth
dyadic intervals,{[

k
2n , k+1

2n

)
, 0 ≤ k < 2n

}
. The sequence 〈S2n ,An〉n∈N, is a martingale. ([8, p. 75]) We assume that an =

f̂n,∀n, for some f ∈ L1[0, 1] and we show that ∀n ∈ N, S2nf = E(f | An), (An)-almost surely:

Fix n ∈ N and 0 ≤ j < 2n. Then∫ j+1
2n

j
2n

(S2nf) (x) dx =
∫ j+1

2n

j
2n

2n−1∑
k=0

(∫ 1

0

f(t)wk(t)dt

)
wk(x)dx

=
∫ j+1

2n

j
2n

∫ 1

0

f(t)

(
2n−1∑
k=0

wk(x +D t)

)
dtdx

=
∫ j+1

2n

j
2n

(∫
[0,1)\[ j

2n , j+1
2n ]

f(t)
2n−1∑
k=0

wk(x +D t)dt +
∫ j+1

2n

j
2n

f(t)
2n−1∑
k=0

wk(x +D t)dt

)
dx

=
∫ j+1

2n

j
2n

(
0 + 2n

∫ j+1
2n

j
2n

f(t)dt

)
dx (by 1.1 note 3 and the Paley Lemma)

=
∫ j+1

2n

j
2n

f(t)dt

Hence, by the definition of An, E(f |An) = S2nf , (An)-almost surely. So, the third condition of Doob’s

theorem is satisfied and 〈S2nf〉n∈N is uniformly integrable.

In order to establish necessity, we suppose that there is a uniformly integrable subsequence 〈Snk
〉

k∈N
of the

sequence of partial sums 〈Sn〉
n∈N

of the general Walsh series
∑∞

n=0 anwn. The Dunford-Pettis Theorem tells

us that 〈Snk
〉

k∈N
is relatively weakly compact and so by the Eberlein-Smullian theorem, there is a weakly

convergent subsequence
〈
Snki

〉
i∈N

of 〈Snk
〉

k∈N
. That is, there is some f ∈ L1[0, 1] such that

nki
−1∑

j=0

ajwj = Snki

weakly−→ f as i →∞.

We fix m ≥ 0 and investigate the behaviour of
〈
Snki

〉
iεN

.

Noting that for each m ∈ N, wm ∈ L∞[0, 1] = L∗1[0, 1] , we see that∫ 1

0

Snki
wm →

∫ 1

0

fwm as i →∞.

Now for nki > m, the orthonormality of the Walsh functions yields∫ 1

0

Snki
wm =

∫ 1

0

nki
−1∑

j=0

ajwj

wm =
nki

−1∑
j=0

(
aj

∫ 1

0

wjwm

)
=
∫ 1

0

amw2
m = am.

Thus ∫ 1

0

Snki
wm → am as i →∞ which forces am =

∫ 1

0

fwm = f̂n

and the proof is complete.

We turn now to the case of the Walsh-Fourier series of an f ∈ Lp for some p > 1:
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Theorem 2.2 A general Walsh series 〈Sn〉n∈N =
∑∞

n=0 anwn is a Walsh–Fourier series of an f ∈ Lp[0, 1]

for some 1 < p < ∞ , if and only if its sequence of partial sums, 〈Sn〉n∈N , contains a subsequence, 〈Snk
〉k∈N,

with bounded Lp norms.

Proof: First we note that given a finite p > 1 and an f ∈ Lp[0, 1], the full sequence of partial sums of the

Walsh-Fourier series of f , 〈Snf〉n∈N , converges in Lp norm to f ([8, p.142]) and thus is Lp–bounded.

In order to establish the converse, we suppose that there is a 1 < p < ∞ and an M > 0 such that∫ 1

0
|Snk

|p ≤ M, for all k ∈ N. Since 〈Snk
〉k∈N is norm bounded in Lp[0, 1], 〈Snk

〉k∈N is relatively weakly

compact in the reflexive Banach space Lp[0, 1] ([4, p. 68]), and so by the Eberlein-Smullian theorem again,

there must be a subsequence
〈
nkj

〉
j∈N

⊆ 〈nk〉k∈N and an f ∈ Lp[0, 1] such that Snkj

weakly→ f as j → ∞.

Now wn ∈ Lq[0, 1] = L∗p[0, 1] (where 1
p + 1

q = 1), and so∫ 1

0

Snkj
wn →

∫ 1

0

fwn as j →∞.

An argument similar to the one in the previous theorem establishes that,∫ 1

0

Snkj
wn → an as j →∞

and so an = f̂n as we wanted.

3 Walsh–Fourier series in Orlicz spaces

Theorem 3.1 Let Φ be an N -function and S = 〈Sn〉n∈N =
∑∞

n=0 anwn a general Walsh series. The

following are equivalent:

1. There is an f ∈ LΦ[0, 1] so that an = f̂n for all n. That is, S = Sf for some f ∈ LΦ[0, 1].

2. There is a constant M > 0 and a subsequence 〈Snk
〉k∈N of 〈Sn〉n∈N so that

〈
Φ
(

1
M Snk

)〉
k∈N

is uni-

formly integrable.

3. There is a constant M > 0 and a subsequence 〈Snk
〉k∈N of 〈Sn〉n∈N so that

〈
Φ
(

1
M Snk

)〉
k∈N

is L1-

bounded.

4. There is a subsequence 〈Snk
〉k∈N of 〈Sn〉n∈N so that 〈Snk

〉k∈N is LΦ-bounded.

Proof: (1 ⇒ 2) : Suppose there is an f ∈ LΦ[0, 1] so that an = f̂n for all n. Then, there is a constant

M > 0 so that Φ
(

f
M

)
∈ L1[0, 1]. By the conditional Jensen inequality we have that

Φ
(

1
M

S2kf

)
= Φ

(
S2k

f

M

)
= Φ

(
E
(

f

M
| Ak

))
≤ E

(
Φ
(

f

M

)
| Ak

)
= S2kΦ

(
f

M

)

7



and as Φ
(

f
M

)
∈ L1 [0, 1] Theorem 2.1 ensures that

〈
S2kΦ

(
f
M

)〉
k∈N

and thus
〈
Φ
(

1
M S2kf

)〉
k∈N

are uni-

formly integrable.

(2 ⇒ 3) : Trivial.

(3 ⇒ 4) : Suppose that there is a constant M > 0 and a subsequence 〈Snk
〉k∈N of the partial sums so that〈

Φ
(

1
M Snk

)〉
k∈N

is L1-bounded. Thus, there is a constant C > 1 so that supk∈N

∫ 1

0
Φ
(

1
M Snk

)
≤ C. Hence,

by the convexity of Φ, for each k we have∫ 1

0

Φ
(

1
MC

Snk

)
≤ 1

C

∫ 1

0

Φ
(

1
M

Snk

)
≤ 1

and so ‖Snk
‖(Φ) ≤ MC. Therefore supk∈N ‖Snk

‖(Φ) ≤ MC.

(4 ⇒ 1) : Suppose that there is an LΦ-bounded subsequence 〈Snk
〉k∈N of the partial sums of the general Walsh

series
∑∞

n=0 anwn. Then there is a constant M > 1 so that supk∈N ‖Snk
‖(Φ) ≤ M . So supk∈N

∫ 1

0
Φ
(

Snk

M

)
≤

1 and by the theorem of De La Vallée Poussin,〈
Snk

M

〉
k∈N

and along with it 〈Snk
〉k∈N

are uniformly integrable.

By the Dunford-Pettis and Eberlein-Smullian theorems, there is a subsequence
〈
Snkj

〉
j∈N

of 〈Snk
〉k∈N and

a function f ∈ L1 [0, 1] so that Snkj

L1-weakly−→ f as j −→ ∞. For each n, wn ∈ L∞ [0, 1] = L∗1 [0, 1] and so∫ 1

0
wnSnkj

→
∫ 1

0
wnf . But once again

∫ 1

0

wnSnkj
=

 0 if nkj < n

an otherwise
.

Therefore f̂n =
∫ 1

0
wnf = an for all n.

In order to see that f ∈ LΦ[0, 1], use Szlenk’s theorem (see [9]) to extract yet another subsequence 〈Rj〉j∈N

of
〈
Snkj

〉
j∈N

with arithmetic means converging to f in L1-norm (that is,
∥∥∥f − 1

m

∑m
j=1 Rj

∥∥∥
1
→ 0 as

m →∞)1. Now choose a subsequence 〈mk〉 of the positive integers so that 1
mk

∑mk

j=1 Rj → f almost surely.

Then Φ
(

1
mk

∑mk

j=1
Rj

M

)
→ Φ

(
f
M

)
almost surely and so the convexity of Φ in tandem with Fatou’s lemma

yields ∫ 1

0

Φ
(

f

M

)
≤ lim inf

k→∞

∫ 1

0

Φ

 1
mk

mk∑
j=1

Rj

M

 ≤ sup
k∈N

1
mk

mk∑
j=1

∫ 1

0

Φ
(

Rj

M

)
≤ 1.

Thus f ∈ LΦ[0, 1] and ‖f‖(Φ) ≤ M .

Corollary 3.2 Suppose that Φ ∈ ∆2. The following are equivalent for a general Walsh series S = 〈Sn〉n∈N =∑∞
n=0 anwn:

1An more direct approach could involve the deep theorem of J. Komlós (see [5]) which states that every L1-bounded sequence

admits a subsequence, each subsequence of which converges almost surely to the same function f ∈ L1 [0, 1].
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1. There is an f ∈ LΦ[0, 1] so that an = f̂n for all n. That is, S = Sf for some f ∈ LΦ[0, 1].

2. There is subsequence 〈Snk
〉k∈N of 〈Sn〉n∈N so that 〈Φ (Snk

)〉k∈N is uniformly integrable.

3. There is subsequence 〈Snk
〉k∈N of 〈Sn〉n∈N so that 〈Snk

〉k∈N has equi-absolutely continuous LΦ-norms.

4. There is a subsequence 〈Snk
〉k∈N of 〈Sn〉n∈N so that 〈Φ (Snk

)〉k∈N is L1-bounded.

5. There is a subsequence 〈Snk
〉k∈N of 〈Sn〉n∈N so that 〈Snk

〉k∈N is LΦ-bounded.

Proof: (1 ⇒ 2) : Suppose there is an f ∈ LΦ[0, 1] so that an = f̂n for all n. Since Φ ∈ ∆2 we have

Φ (f) ∈ L1[0, 1] and by the conditional Jensen inequality

Φ (S2kf) = Φ (E (f | Ak)) ≤ E (Φ (f) | Ak) = S2kΦ (f)

and since Φ (f) ∈ L1 [0, 1], Theorem 2.1 ensures that 〈S2kΦ (f)〉k∈N and thus 〈Φ (S2kf)〉k∈N are uniformly

integrable.

(2 ⇒ 3) : Suppose that there is subsequence 〈Snk
〉k∈N of 〈Sn〉n∈N so that 〈Φ (Snk

)〉k∈N is uniformly inte-

grable. Since Φ ∈ ∆2, by 1.2 note 8(c) (also see [1, lemma 2.1]), 〈Snk
〉k∈N has equi-absolutely continuous

LΦ-norms.

(3 ⇒ 4) : Trivial

(4 ⇒ 5) : Suppose that there is a subsequence 〈Snk
〉k∈N of 〈Sn〉n∈N so that supk∈N

∫ 1

0
Φ (Snk

) ≤ C for some

Ċ > 0. Let Ψ denote the complement of Φ. Then for each k, Young’s inequality yields

‖Snk
‖Φ = sup

{∣∣∣∣∫ 1

0

gSnk

∣∣∣∣ : ∫ 1

0

Ψ(g) ≤ 1
}
≤
∫ 1

0

Φ (Snk
) + sup

{∣∣∣∣∫ 1

0

Ψ(g)
∣∣∣∣ : ∫ 1

0

Ψ(g) ≤ 1
}
≤ C + 1.

Therefore supk∈N ‖Snk
‖Φ < ∞.

(5 ⇒ 1) : This follows directly from theorem 3.1.

The theorem of De La Vallée Poussin together with Theorem 3.1 and Corollary 3.2 gives several equivalent

criteria which determine when a general Walsh series is the Walsh-Fourier series of a function in Lp [0, 1] for

1 ≤ p < ∞. The next two corollaries summarize some of them:

Corollary 3.3 The following are equivalent for a general Walsh series S = 〈Sn〉n∈N =
∑∞

n=0 anwn:

1. 〈Sn〉n∈N =
∑∞

n=0 anwn is the Walsh–Fourier series of an f ∈ L1[0, 1].

2. There is an N -function Φ ∈ ∆2 so that 〈Sn〉n∈N =
∑∞

n=0 anwn is the Walsh–Fourier series of an

f ∈ LΦ[0, 1].

3. There is an N -function Φ so that 〈Sn〉n∈N =
∑∞

n=0 anwn is the Walsh–Fourier series of an f ∈ LΦ[0, 1].
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Proof: (1 ⇒ 2) : By theorem 2.1 there is a uniformly integrable subsequence 〈Snk
〉

k∈N
of 〈Sn〉n∈N and thus

by Alexopoulos’ improvement to the classical De La Vallée Poussin theorem (see 1.2 note 8b and [1]), there

is an N -function Φ ∈ ∆2 so that 〈Snk
〉

k∈N
has equi-absolutely continuous LΦ-norms. Corollary 3.2 finishes

the job.

(2 ⇒ 3) : Trivial

(3 ⇒ 1) : Trivial since LΦ[0, 1] ⊂ L1[0, 1] for any N -function Φ.

Corollary 3.4 The following are equivalent for a general Walsh series S = 〈Sn〉n∈N =
∑∞

n=0 anwn:

1. S = 〈Sn〉n∈N =
∑∞

n=0 anwn is the Walsh–Fourier series of an f ∈ LΦ[0, 1] for some N -function Φ

whose complement Ψ satisfies the ∆2 condition.

2. S = Sf for some function f ∈ Lp [0, 1] where 1 < p < ∞.

Proof: (1 ⇒ 2) : If Ψ satisfies the ∆2 condition then there is a constants K > 0 and q > 1 so that

Ψ (x) ≤ K |x|q for large values of x. Thus there is a constant C > 0 so that C |x|p ≤ Φ (x) ( 1
p + 1

q = 1) for

large values of x. Hence the implication follows from the inclusion LΦ ⊆ Lp.

(2 ⇒ 1) : The complement Ψ of the N -function Φ defined by Φ (x) = |x|p
p is given by Ψ (x) = |x|q

q where
1
p + 1

q = 1. Plainly Ψ ∈ ∆2.

Now we will investigate the behaviour of Walsh series in LΦ[0, 1] for Φ 6∈ ∆2:

First, note that 〈Snf〉n∈N ⊆ EΦ ∀f ∈ LΦ and EΦ is a closed subspace of LΦ. So if f ∈ LΦ \ EΦ then no

subsequence of 〈Snf〉n∈N converges to f in LΦ norm. In fact, much more is true:

Lemma 3.5 If the Walsh–Fourier series 〈Snf〉n∈N =
∑∞

n=0 f̂nwn of a function f ∈ LΦ[0, 1] has a subse-

quence 〈Snk
f〉k∈N that is weakly convergent to a function g ∈ LΦ[0, 1] then f = g almost surely and thus

f ∈ EΦ.

Proof: Suppose that Snk
f

weakly→ g as k → ∞. Since 〈Snf〉n∈N ⊆ EΦ and EΦ is a closed subspace of LΦ

we conclude that g ∈ EΦ. Now for each n, wn ∈ L∞[0, 1] ⊆ E∗
Φ = LΨ[0, 1] (where Ψ is the complement of

Φ) and so ∫ 1

0

(Snk
f) wn →

∫ 1

0

gwn as k →∞.

By the orthonormality of the Walsh functions
∫ 1

0
Snk

wn = f̂n for sufficiently large values of k and so

f̂n =
∫ 1

0
gwn. Hence

∫ 1

0
fwn =

∫ 1

0
gwn or equivalently

∫ 1

0
(f − g) wn = 0, ∀n ∈ N. Since f and g are both in

L1 [0, 1], f − g ∈ L1 [0, 1] and so S2n (f − g) =
∑2n−1

k=0
̂(f − g)kwk(x) → f − g almost surely as n →∞. But

̂(f − g)k =
∫ 1

0
(f − g) wk = 0, ∀k ∈ N. Therefore f − g = 0 almost surely.

Corollary 3.6 If f ∈ LΦ \ EΦ then no subsequence of 〈Snf〉n∈N possesses equi-absolutely continuous LΦ

norms.
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Proof: If 〈Snk
〉k∈N is a subsequence of 〈Snf〉n∈N with equi-absolutely continuous LΦ-norms then 〈Snk

〉k∈N

has a weakly convergent subsequence (see 1.2 note 8(a) and [1, thm 2.3]) and thus by lemma 3.5 f ∈ EΦ,

contradicting the hypothesis.
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